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Mid-2020 DOE Landscape

• Department of Energy (DOE) computing centers exhibit variety
– Accelerators vs. no accelerators

• Variety of accelerator vendors
• Variety in CPU/GPU ratios, connectivity

– Interconnect type, topology, capabilities
– On-node NVM vs. near-node NVM vs. no NVM

• DOE Centers epitomize need for Performance, Portability, and 
Productivity
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The DOE Landscape: OLCF

• Oak Ridge Leadership Computing 
Facility (OLCF) currently fields Summit
– Each node contains six NVIDIA V100 GPUs 

and two POWER9 CPUs

• OLCF will soon deploy Frontier
– Each node will contain four AMD Radeon 

Instinct GPUs and one AMD EPYC CPU

• 90%+ of OLCF systems’ computational 
capability comes from GPUs
– Other systems have/will have similar 

characteristics
– I will focus on GPUs in this talk
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“Right Way” vs. “Wrong Way”

• GPU type suggests “right” or “natural” approach
– Summit:

• CUDA
• OpenACC
• OpenMP offload

– Frontier
• HIP
• OpenMP offload

– Also portability libraries (e.g., Kokkos, RAJA) with these 
backends

• Sometimes fun to consider what is possible, especially 
when it is “natural” on some other interesting system(s)
– Open source options
– Functionality rather than performance

• Definitely NOT a criticism about vendor(s) choices!
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OLCF: Some Possible “Wrong Ways”

• What “wrong ways” are theoretically 
possible on Summit?
– OpenCL
– HIP
– SYCL
– DPC++

• And on Frontier?
– OpenCL
– SYCL
– DPC++
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Summit: OpenCL

• OpenCL: Khronos standard, C-based, very mature – and 
might even be performance portable

• CUDA installation includes some OpenCL-related files
– Installable Client Driver (ICD) with config file
– OpenCL loader library (libOpenCL.so) – but it is for X86_64
– No OpenCL headers
– To reiterate: I am not criticizing NVIDIA for not supporting 

OpenCL on POWER9

• Two possible “wrong ways”
– For both: Download Khronos headers, build Khronos ICD loader 

library
– Option 1: use NVIDIA ICD

• Platform/device queries and data transfer OK, can’t do OpenCL JIT 
compile

– Option 2: use Portable Computing Language (POCL) open 
source OpenCL implementation

CLInfo with NVIDIA ICD



7

Summit: HIP

• Heterogeneous-compute Interface 
for Portability (HIP)

• Not really a “wrong way” on 
Summit
– HIP designed as portability layer with 

AMD ROCm and NVIDIA CUDA 
backends

• OLCF provides a module for HIP 
but not (yet) any of the hip* 
libraries
– HIP can be installed by user as header-

only library
– HIP libraries can be built for CUDA 

backend and installed by user
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Producing and Compiling HIP Code

CUDA 
Code

HIP 
Code

Hipify-clang

Hipify-perl
Hipcc, platform ‘nvcc’

Executable 
Code for 
NVIDIA GPU

Executable 
Code for 
AMD GPU

nvcc

Hipcc, platform ‘hcc’ hcc

CUDA Code

HC Code

• Hipify-* tools help convert CUDA 
code (kernels and API calls) to 
HIP

• Hipcc compiler driver invokes 
correct underlying compiler to 
compile for target GPU, with 
GPU-specific HIP headers
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Performance (II)

• Average of 
normalized HIP 
performance 
was 99.8% with 
data transfer 
costs, 99.9% 
w/out

Note axis range (0.9 to 1.05)
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Summit: SYCL

• SYCL: Khronos standard, C++-based, 
OpenCL’s spiritual successor

• Some options for this “wrong way”:
– hipSYCL: a SYCL 1.2 implementation built on 

HIP
• CUDA for GPU, OpenMP for CPU
• Have demonstrated this running on Summit with 

simple examples, e.g., matrix aX+Y
– Tried using CodePlay’s Community Edition 

to compile kernels to PTX code on spare 
x86_64 system, transferring to Summit, and 
using them via POCL – not successful
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DPC++

• Intel’s oneAPI C++-based programming approach
– Several useful extensions to SYCL 1.2 (some appearing in SYCL 2020)

• A “wrong way” for Summit:
– Intel LLVM staging repository includes DPC++ compiler sources
– Found small number of build problems, e.g., reliance on CPUID 

instruction that isn’t supported on POWER9

• Others have reported some success in working around for 
other non-x86_64 platforms, so may be possible soon on 
Summit
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Frontier: OpenCL, SYCL, and DPC++

• Have less experience trying these “wrong way” approaches on pre-
Frontier systems so far

• AMD has traditionally supported OpenCL 
– But SPIR/SPIR-V support varies by product line - not supported on MI25/MI60
– Options: POCL, “manual” conversion of SPIR-V to AMDGCN

• SYCL and DPC++
– CodePlay’s community edition

• Earlier versions had some undocumented support for AMDGCN, missing from more 
recent versions

– Intel LLVM repository
• CPUID not an issue here
• Still reliant on SPIR-V tools/translator to convert to AMDGCN?
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Summary
• Thanks to open source projects, it can be quite interesting to 

explore the “wrong way” options for programming GPUs on 
systems like OLCF’s Summit
– Actively exploring OpenCL, HIP, SYCL/DPC++
– Starting to explore approaches for Frontier

• There can be a cost in terms of
– Stability
– Standards compliance
– Performance
– Support

• For more information: rothpc@ornl.gov

mailto:rothpc@ornl.gov

